Genomic characterization of a three-dimensional skin model following exposure to ionizing radiation

نویسندگان

  • Reem Yunis
  • Huguette Albrecht
  • Karen M. Kalanetra
  • Shiquan WU
  • David M. Rocke
چکیده

This study aimed at characterizing the genomic response to low versus moderate doses of ionizing radiation (LDIR versus MDIR) in a three-dimensional (3D) skin model, which exhibits a closer tissue complexity to human skin than monolayer cell cultures. EpiDermFT skin plugs were exposed to 0, 0.1 and 1 Gy doses of X-rays and harvested at 5 min, 3, 8 and 24 h post-irradiation (post-IR). RNA was interrogated for global gene expression alteration. Our results show that MDIR modulated a larger number of genes over the course of 24 h compared to LDIR. However, immediately and throughout the first 3h post-IR, LDIR modulated a larger number of genes than MDIR, mostly associated with cell-cell signaling and survival promotion. Significant modulation of pathways was detected only at 3 h post-IR in MDIR with induction of genes promoting apoptosis. Collectively, the data show different dynamics in the response to LDIR versus MDIR, especially in cell-cycle distribution. LDIR-exposed tissues showed signs of attempted cell-cycle re-entry as early as 3 h post-IR, but were arrested beyond 8 h at the G1/S checkpoint. At 24 h, cells appeared to accumulate at the G2/M checkpoint. MDIR-exposed tissues did not exhibit a prolonged G1/S arrest but rather a prolonged G2/M arrest, which was sustained at least up to 24 h. By 24 h cells exhibited signs of recovery in both LDIR- and MDIR-exposed tissues. In summary, the most pronounced difference in the initial cellular response to LDIR versus MDIR is the promotion of protection and survival in LDIR versus the promotion of apoptosis in MDIR.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Consumption of antioxidant dietary agents, curcumin and vitamin C, protects cellular DNA from gamma-radiation

Background: Exposure to ionizing radiation results in genotoxicity and the unrepaired lesions in cellular DNA results in cell cycle arrest, reproductive death, interphase death, division delay, chromosome aberrations, mutations, etc. leading to the intensive destruction of cells and violation of their proliferative capacity there by adversely affecting the mammalian system. Since ionizing radia...

متن کامل

Can Light Emitted from Smartphone Screens and Taking Selfies Cause Premature Aging and Wrinkles?

Since the early days of human life on the Earth, our skin has been exposed to different levels of light. Recently, due to inevitable consequences of modern life, humans are not exposed to adequate levels of natural light during the day but they are overexposed to relatively high levels of artificial light at night. Skin is a major target of oxidative stress and the link between aging and oxidat...

متن کامل

Identification of specific gene expression after exposure to low dose ionizing radiation revealed through integrative analysis of cDNA microarray data and the interactome

Background: Accumulating reports suggest that the biological effects of low- and high- dose ionizing radiation (LDIR and HDIR) are qualitatively different and might cause different effects in human skin. Materials and Methods: To better understand the potential risks of LDIR, we analyzed three cDNA microarray datasets from the Gene Expression Omnibus database. Results: A pathway analysis showed...

متن کامل

In vivo Exposure Effects of 99mTc-methoxyisobutylisonitrile on the FDXR and XPA Genes Expression in Human Peripheral Blood Lymphocytes

Objective(s): In recent years, the application of radiopharmaceuticals in nuclear medicine has increased substantially. Following the diagnostic procedures performed in nuclear medicine departments, such as myocardial perfusion imaging, patients generally receive considerable doses of radiation. Normally, radiation-induced DNA damages are expected following exposure to a low-dose ionizing radia...

متن کامل

Analysis of ionizing radiation-induced DNA damage and repair in three-dimensional human skin model system.

Knowledge of cellular responses in tissue microenvironment is crucial for the accurate prediction of human health risks following chronic or acute exposure to ionizing radiation (IR). With this objective, we investigated the radio responses for the first time in three-dimensional (3D) artificial human skin tissue microenvironment after gamma-rays radiation. IR-induced DNA damage/repair response...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 53  شماره 

صفحات  -

تاریخ انتشار 2012